JOHNSTOWN TOWN OF 2018 Drinking Water Quality Report For Calendar Year 2017

Public Water System ID: CO0162418

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact MARTY JONES at 970-587-4664 with any questions or for public participation opportunities that may affect water quality.

General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting http://water.epa.gov/drink/contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- •Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- •Inorganic contaminants: salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- •Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- •Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- •Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Source Water Assessment and Protection (SWAP)

Our Water Sources

Source	Source Type	Water Type	Potential Source(s) of Contamination
BIG T PROJECT	Intake	Surface Water	Chemical storage, wastewater discharge,
JOHNSTOWN RESERVOIR	Intake	Surface Water	leaking storage tanks, mine sites, forests, transportation
PURCHASED WATER			residential, farms, oil/gas wells, roads, & other
FROM LITTLE THOMPSON	Consecutive Connection	Surface Water	facilities <u>.</u>
WD			FOR ALL SOURCES ABOVE

Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- **Non-Health-Based** A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- Formal Enforcement Action (No Abbreviation) Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- Picocuries per liter (pCi/L) Measure of the radioactivity in water.

- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Detected

Contaminants

JOHNSTOWN TOWN OF routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2017 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

round of monitori	ng.										
	Disinfectants Sampled in the Distribution System										
TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm <u>OR</u>											
If sample size is less than 40 no more than 1 sample is below 0.2 ppm											
Typical Sources: Water additive used to control microbes											
Disinfectant	Time Period Results Number of Sample TT MRDL										
Name			Below Level	Size	Violation						
Chlorine	December, 2017	Lowest period percentage of samples	0	10	No	4.0 ppm					
		meeting TT requirement: 100%									

	Lead and Copper Sampled in the Distribution System												
Contaminant	Time Period	90 th	Sample	Unit of	90 th	Sample	90 th	Typical Sources					
Name		Percentile	Size	Measure	Percentile	Sites	Percentile AL						
					AL	Above AL	Exceedance						
Copper	09/12/2017 to	0.33	30	ppm	1.3	0	No	Corrosion of					
	09/15/2017							household plumbing					
								systems; Erosion of					
								natural deposits					
Lead	09/12/2017 to	3	30	ppb	15	0	No	Corrosion of					
	09/15/2017							household plumbing					
								systems; Erosion of					
								natural deposits					

	Disinfection Byproducts Sampled in the Distribution System												
Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	Highest Compliance Value	MCL Violation	Typical Sources			
Total	2017	21.02	7.1 to 46.8	8	ppb	60	N/A	, 3222	No	Byproduct of			
Haloacetic										drinking			
Acids										water			
(HAA5)										disinfection			
Total	2017	19.69	4.8 to 55.8	8	ppb	80	N/A		No	Byproduct of			
Trihalomet										drinking			
hanes										water			
(TTHM)										disinfection			

Total Organic Carbon (Disinfection Byproducts Precursor) Removal Ratio of Raw and Finished Water

Contaminant	Year	Average	Range	Sample	Unit of	TT Minimum	TT Violation	Typical Sources
Name			Low – High	Size	Measure	Ratio		
Total Organic Carbon Ratio	2017	1.32	0.96 to 1.62	11	Ratio	1.00	No	Naturally present in the environment

Disinfectants Sampled at the Entry Point to the Distribution System											
Contaminant Name	Year	Number of Samples	Sample	TT/MRDL	TT/MRDL	Typical Sources					
		Above or Below		Requirement	Violation						
		Level									
Chlorine/Chloramine	2017	0	2050	TT = No more than 4	No	Water additive used to					
				hours with a sample		control microbes					
				below 0.2 MG/L							

	Summary of Turbidity Sampled at the Entry Point to the Distribution System												
Contaminant	Sample Date	Level Found	TT Requirement	TT	Typical								
Name				Violation	Sources								
Turbidity	Date/Month: Feb	Highest single measurement: 0.292 NTU	Maximum 1 NTU for any single measurement	No	Soil Runoff								
Turbidity	Month: Dec	Lowest monthly percentage of samples meeting TT requirement for our technology: 100 %	In any month, at least 95% of samples must be less than 0.3 NTU	No	Soil Runoff								

		Inorga	nic Contaminants S	ampled at th	ne Entry Point	to the Dist	ribution Sys	tem	
Contaminant	Year	Average	Range	Sample	Unit of	MCL	MCLG	MCL	Typical Sources
Name			Low – High	Size	Measure			Violation	
Barium	2016	0.02	0.02 to 0.02	1	ppm	2	2	No	Discharge of drilling
									wastes; discharge
									from metal
									refineries; erosion of
									natural deposits
Fluoride	2016	0.17	0.17 to 0.17	1	ppm	4	4	No	Erosion of natural
									deposits; water
									additive which
									promotes strong
									teeth; discharge from
									fertilizer and
									aluminum factories
Nitrate	2016	0.4	0.4 to 0.4	1	ppm	10	10	No	Runoff from
									fertilizer use;
									leaching from septic
									tanks, sewage;
									erosion of natural
									deposits

	Cryptosporidium and Raw Source Water E. coli									
Contaminant Name	Year	Number of Positives	Sample Size							
			-							
E. Coli	2017	3	3							

	Secondary Contaminants**								
	**Secondary standards are non-enforceable guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic								
	effects (such as taste, odor, or color) in drinking water.								
	Contaminant Name	Year	Average	Range	Sample	Unit of Measure	Secondary Standard		
				Low – High	Size				
İ	Sodium 2016 11.9 11.9 to 11.9 1 ppm N/A								

Unregulated Contaminants***

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Third Unregulated Contaminant Monitoring Rule (UCMR3). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (http://www.epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR3 sampling and the corresponding analytical results are provided below.

Contaminant Name	Year	Average	Range	Sample Size	Unit of Measure
		, and the second	Low – High	•	

^{***}More information about the contaminants that were included in UCMR3 monitoring can be found at: http://www.drinktap.org/water-info/whats-in-my-water/unregulated-contaminant-monitoring-rule.aspx. Learn more about the EPA UCMR at: http://www.drinktap.org/water-info/whats-in-my-water/unregulated-contaminant-monitoring-rule or contact the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/contact.cfm.

Violations, Significant Deficiencies, Backflow/Cross-Connection, and Formal Enforcement Actions

		Violations			
Name	Category	Time Period	Health Effects	Compliance Value	TT Level or MCL
NITRATE	FAILURE TO MONITOR AND/OR REPORT - NON- HEALTH-BASED	01/01/2017 - 12/31/2017	N/A	N/A	N/A
INORGANICS GROUP	FAILURE TO MONITOR AND/OR REPORT - NON- HEALTH-BASED	01/01/2017 - 12/31/2017	N/A	N/A	N/A
FLUORIDE GROUP	FAILURE TO MONITOR AND/OR REPORT - NON- HEALTH-BASED	01/01/2017 - 12/31/2017	N/A	N/A	N/A
CARBON, TOTAL	FAILURE TO MONITOR AND/OR REPORT - NON- HEALTH-BASED	07/01/2017 - 09/30/2017	N/A	N/A	N/A
ALKALINITY, TOTAL	FAILURE TO MONITOR AND/OR REPORT - NON- HEALTH-BASED	09/01/2017 - 09/30/2017	N/A	N/A	N/A

Additional Violation Information

Explanation of the violation(s), the steps taken to resolve them, and the anticipated resolved date:

The above violations weren	t sampiea or	were missed at the a	ppropriate time.	1 ney	an nave been	resolved and	sampiea ana	are within	permit

limits since the violations.

^{*}Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.*